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Onset of spatiotemporal intermittency in a coupled-map lattice
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We have investigated numerically the onset of spatiotemporal intermittency in a one-dimensional lat-
tice of coupled nonlinear maps. The phase boundary between the laminar and intermittent states has a
complicated form, with several reentrant regions. Using finite-size scaling, we have determined the criti-
cal exponents associated with the transition to spatiotemporal intermittency for several values of the
map’s coupling parameter. The exponents appear to be nonuniversal in the weak-coupling limit of the

map.

PACS number(s): 05.45.+b

While the study of chaotic behavior in spatially
confined systems is well developed [1], our understanding
of chaos in systems with many spatial degrees of freedom
is much less advanced. Experiments on Rayleigh-Bénard
convection [2,3] and the printer’s instability [4] have
demonstrated that chaos in extended quasi-one-
dimensional systems can take the form of spatiotemporal
intermittency (STI). In this state, slowly evolving regions
of ordered (“laminar”) and disordered (‘‘turbulent”) ap-
pearance coexist. Both the spatial extent and the tem-
poral lifetime of these regions fluctuate. Similar behavior
has been studied in systems of coupled partial-differential
equations [5], nonlinear maps [6—10], and cellular auto-
mata [8], and STI seems to be an important step on the
route to full turbulence in extended one-dimensional sys-
tems.

Coupled-map lattices (CML’s) are arrays of lattice
points, each of which has a local dynamics governed by
an iterative (nonlinear) map. Coupling of a lattice point’s
dynamics to that of its neighbors models the coupling of
spatial degrees of freedom in an extended system. In
CML’s, both space and time are discretized, but the
range of values that can be assigned to a site is continu-
ous. CML’s can thus be viewed as models of reality inter-
mediate between fully continuous partial-differential
equations and fully discretized cellular automata.

The transition from completely laminar behavior to
STI in CML’s has been studied by several groups [7,10].
The transition displays features analogous to those seen
in equilibrium critical phenomena—for example, spatial
correlation lengths and relaxation times that diverge as
the transition is approached, and the equivalent of an or-
der parameter that goes to zero at the transition. In
CML’s, however, as in laboratory dynamical systems, the
transition to STI is a nonequilibrium process. Houlrik,
Webman, and Jensen [10] have applied ideas and tech-
niques from the study of equilibrium phase transitions to
the transition in a CML, and studied the way in which
the system behavior scales with lattice size in the critical
region. They have calculated, numerically and in two
mean-field approximations, the phase diagram for this
transition. From their numerical results and a finite-size
scaling analysis, they extract critical exponents for the
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transition to STI for a few values of the system parame-
ters.

In this paper we present the results of some numerical
calculations of the transition to STI in the coupled-map
system earlier studied by Houlrik, Webman, and Jensen
[10]. Our initial goal was to investigate a suggestion
made by them that the critical exponents characterizing
this transition may be universal over some range of the
map’s parameter space. The calculation of critical ex-
ponents over the entire parameter range with an accuracy
sufficient to permit a meaningful discussion of their
universality, or the absence thereof, would, however,
have required time and computing resources unavailable
to us. We content ourselves, therefore, with presenting a
more detailed picture of the phase boundary between
laminar and STI states, and values of the critical ex-
ponents for several more values of the system parameters,
mostly in the weak-coupling limit of the map.

The one-dimensional coupled-map lattice we studied is
the map used by Houlrik, Webman, and Jensen [10] and
Chaté and Manneville [7], and is defined by

x=(1=ex! T+ ST )

Here € is the strength of a diffusive coupling between
nearest-neighbor sites on the lattice. The subscript is a
site index and the superscript the iteration number. The
local mapping f (x) is a modified tent map given by

rx (0=<x<1)
Sx)=1r(1—x) (1=x=1) (2)
x (1<x=<rs2).

The parameter r >2 can be viewed as a control param-
eter or “‘temperature” variable. This local map displays
transient chaos [11]; that is, sites iterate chaotically until
they eventually escape to the line of stable fixed points
1<x =r/2. For larger r, the “escape window” is larger
and the length of the transient is correspondingly smaller.
Following established terminology, we refer to chaotic
sites as turbulent and nonchaotic sites as laminar. The
nearest-neighbor coupling in Eq. (1) allows laminar sites
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to be pulled back into the turbulent state by their neigh-
bors, and leads to the development of STI.

As discussed by Houlrik, Webman, and Jensen [10],
the way in which the critical behavior of the CML on
finite lattices scales with lattice size L can be analyzed to
give the true, infinite-lattice critical behavior. Since we
make use of the results of their calculations, we summa-
rize them here. We define the “order parameter” m to be
the mean number of turbulent sites on the lattice, i.e.,
those sites for which x; =1. Since the finite system does
not evolve to a well-defined steady state, m is time depen-
dent, and eventually goes to zero in a characteristic ab-
sorption time 7. At fixed 7, the transition to STI occurs
at a critical value of e=¢€,(r). When € is on the laminar
side of €,, 7 grows logarithmically with L, while for € on
the chaotic side of €., 7 grows exponentially. At criticali-

ty,

T~L*%,

(3)

where z =v, /v, is a dynamical critical exponent. v, is the
critical exponent characterizing the divergence of the ab-
sorption time as |e—e,|—0:

r~le—e | T, @)

and v, is the analogous exponent for the correlation
length, i.e., the characteristic size of the laminar regions.
For small times (t << L?), m behaves like

m~t P , (5)
while for long times (¢ >>L?),

m~e L7 (6)
The critical exponent [ characterizes the order

parameter’s approach to zero as e—e€, from within the
STI phase. Using these relations, we can determine the
exponents B3, v, and v, from the results of our numerical
calculations, as was done by Houlrik, Webman, and Jen-
sen in Ref. [10] and illustrated in their Figs. 8 and 9.

Our calculations were done on one-dimensional lattices
of size L =2", for 3 <n <11, with periodic boundary con-
ditions. The site values x; were initialized to random
values between O and 1 and the map iterated until m
evolved to zero. Typically 300 to 1000 runs were aver-
aged for analysis. Initial estimates of €,(r), accurate to
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FIG. 1. The phase diagram of the coupled-map lattice. The
system is laminar above the plotted data and spatiotemporally
intermittent below. @, points calculated in the present work; O,
points taken from Ref. [10]. The inset shows the low-€ region in
more detail; the curve through the points is a guide to the eye
only and greatly exaggerates the range in 7 of the loops in the
phase boundary.

plus or minus a few times 10~3, were obtained by inspec-
tion of plots of logr against logL, for L <512, bearing in
mind Eq. (3). Critical exponents were evaluated from cal-
culations on lattices with L <2048 and correspondingly
more refined values of €., making use of the scaling rela-
tionships given in Egs. (3)-(5).

Figure 1 shows the calculated phase diagram for this
system. The system is ordered above the plotted data
points and in the STI state below. We also show in Fig. 1
the points calculated by Houlrik, Webman, and Jensen
[10]. The phase boundary has a rather complicated form.
The phase diagram is reentrant over most of the range of
r, in the sense that, for fixed r, increasing € takes the sys-
tem from the laminar phase to STI and back to the lami-
nar phase again. There are also several ranges of r for
which the model has multiply reentrant behavior. The
inset to Fig. 1 shows the small-€ region of the phase dia-
gram on an expanded scale. There are three values of €,
shown for r=2.35, in the range 0.040<¢e<0.046, and
similarly for r=2.55 in the range 0.0855e<0.135.
These reentrant regions each span a very small range of 7;

TABLE I. Numerically determined values of the critical exponents and exponent ratios.

r €. z ﬁ/V” B ’V” vy
2.2 0.01608(2) 1.684(6) 0.146(6) 0.26(3) 1.8(1) 1.1(1)
2.3 0.032 18(2) 1.44(2) 0.198(6) 0.32(1) 1.66(2) 1.15(3)
2.4 0.060 90(2) 1.39(2) 0.252(6) 0.36(1) 1.42(2) 1.02(3)
2.5 0.072 28(6) 1.51(2) 0.243(6) 0.31(1) 1.26(2) 0.83(2)
2.539 0.1000(1) 1.43(2)

2.6 0.13672(4) 1.25(2) 0.189(6) 0.28(1) 1.48(2) 1.18(4)
2.7 0.151 15(5) 1.43(2) 0.186(6) 0.26(1) 1.41(2) 0.99(3)
34 0.395 50(25) 1.19(3) 0.27(2)

3.7 0.446 0(5) 1.12(2) 0.33(2) 0.24(1) 0.75(2) 0.67(2)
34 0.8475(3) 1.64(2) 0.14(1) 0.20(1) 1.47(4) 0.90(3)
3.77 0.5200(5) 1.24(2) 0.33(2) 0.27(2) 0.83(3) 0.66(3)
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the curve through the points in the inset to Fig. 1 is a
guide to the eye only and greatly exaggerates the size of
the “loops.” We have numerically found a similar region
near r =3.75, €=0.6. From the appearance of the phase
boundary, there is most likely another of these regions
between €~=0.2 and €~=0.36 near =3, and possibly oth-
ers elsewhere, although we have not confirmed this.
Figures 2(a)-2(e) show the exponent ratios z and B/v,

and the critical exponents S, i and v, plotted as a func-
tion of €,; these quantities are also tabulated in Table I.
We determined €, to an accuracy of on the order of
+10™* or better from log-log plots of 7 vs L, for different
values of €. €, was taken as that value for which 7 most
nearly grew as a power law in lattice size. The exponent
z was obtained from fits of 7(L) to Eq. (3). The errors
given include a contribution to account for the uncertain-
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FIG. 2. The critical exponents and exponent ratios for the onset of spatiotemporal intermittency, plotted as a function of the criti-
cal value of the control parameter €. (a) z=v;/v;; (b) B/v|; (c) B; (d) v|; (e) v,. W, present work; A, results of Ref. [10].
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ty in €.. The ratio B/v| was determined from the slopes
of log-log plots of m vs ¢ (where the time t is given by the
iteration number) calculated at e=¢_, at times short com-
pared to L% but neglecting initial-condition-dependent
behavior observed over the first few iterations. v, was ob-
tained from log-log plots of 7 vs |e—e,|. From these
quantities the exponents 8 and v, were calculated.

From the graphs shown in Fig. 2 it can be seen that, at
low values of ¢, i.e., in the weak-coupling limit of the
map, all of the critical exponents and exponent ratios
vary nonsystematically by substantially more than the
size of the error bars, and appear to depend in a compli-
cated way on the coupling parameter. The exponents
thus appear to be nonuniversal in the weak-coupling lim-
it, although of course we cannot make any statement
about the values of the exponents between the points
which we calculated.

We have added only one point to the results of Ref.
[10] for values of € 0.7, but the exponents for our new
point agree within error with the previous results. Cer-

tainly there is much less variation in the exponent values
in this range than at low €, and it remains possible that
the transition to spatiotemporal intermittency in the
strong-coupling limit is described by a small number of
universality classes.

We have numerically calculated the boundary between
the laminar and spatiotemporally intermittent states of a
nonlinear coupled-map lattice, and determined the asso-
ciated critical exponents for a few values of the system
parameters. We have demonstrated that the phase
boundary has a rather complicated, multiply reentrant
form. The critical exponents appear to be nonuniversal
in the weak-coupling limit of the map, but at stronger
values of the coupling parameter universality remains a
possibility; further work is required to resolve this issue.
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